
Computing the topological pressure for intermittent maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 L351

(http://iopscience.iop.org/0305-4470/30/11/002)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) L351–L358. Printed in the UK PII: S0305-4470(97)81860-4

LETTER TO THE EDITOR

Computing the topological pressure for intermittent maps

Per Dahlqvist
Mechanics Department, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Received 14 February 1997, in final form 17 March 1997

Abstract. The topological pressure is obtained as the leading zero of a dynamical zeta function.
We consider the problem of computing this zero when it is close to a singularity. In particular
we study a family of intermittent maps, which we argue exhibit a branch point singularity in its
zeta functions. The convergence of the cycle expansion close to this point is extremely slow.
To deal with this problem we consider a resummation of the cycle expansion. The idea is quite
similar to that of Pad́e approximants, but the ansatz is a generalized series expansion around the
branch point rather than a rational function. The improvement on convergence of the leading
zero is considerable. We also briefly discuss the relation between correlation decay and the
nature of the branch point.

1. Introduction

The topological pressure [1, 2] is related to the leading zeroz0(β) of the zeta function

1/ζβ(z) =
∏
p

(
1− znp

|3p|β
)

(1)

as a function of the parameterβ. The product in (1) runs over all primitive periodic orbits
p, having periodnp and stability3p = df np/dx|x=xp with xp being any point alongp. The
topological pressureP(β) is given by

P(β) = − logz0(β). (2)

Various properties known from the thermodynamic formalism for chaotic system, such
as Renyi entropies, Lyapunov exponents, are directly related to the topological pressure [2].
For instance the Lyapunov exponent is given by

λ = −dP(β)
dβ

∣∣∣∣
β=1

(3)

and the topological entropy by

h = P(0). (4)

For open systems also the escape rate and (multi)fractal dimensions of the repellor are
available via the the topological pressure.

By expanding the product (1) one obtains a formal power series representation of the
zeta function, usually referred to as a cycle expansion [3]. The leading zeroz0(β) can in
principle be computed from this series, provided it lies inside the leading singularity, which
is normally the case ifβ < 1. For Axiom A systems, that is, hyperbolic systems with a
finite Markov partition, this procedure is computationally very efficient [3], in particular if
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one substitutes the Fredholm determinant for the zeta function. However, convergence is
seriously slowed down if the leading zero is close to a singularity, or if zeros accumulate or
cluster close by. We will now discuss how this problem may be dealt with for intermittent
systems.

We will consider the intermittent mapx 7→ f (x) on the unit interval, with

f (x) =
{
f0(x) = x + 2sx1+s 06 x < 1/2

f1(x) = 2x − 1 1/26 x 6 1
(5)

wheres > 0. For s = 0 the map would just be the binary shift map and the leading zero
given byz0(β) = 2β−1 and the topological pressure a linear function inβ.

But for s > 0 the map is intermittent; the fixed pointx = 0 is neutrally stable:f ′(0) = 1.
The map admits a binary coding, we associate the letter 0 with the left leg, and 1 with the
right leg. The neutral fixed point now corresponds to the periodic orbit0.

There are several methods for accelerating convergence of power series, for instance
the method of Pad́e approximants is widely used. However, if the nature of the disturbing
singularity is known one can tailor a more optimal resummation scheme. Therefore, we
start in section 2 by studying the nature of the leading singularity which is found to be a
branch point atz = 1. In section 3 we resum the formal power series (aroundz = 0) into a
generalized power series around the branch point in a manner quite similar to that of Padé
approximants. The leading zero is then computed from a truncation of the resummed series.
Although the basic idea is rather simple, the resulting method is surprisingly efficient.

2. The nature of the leading singularity

The system under consideration has a complete binary symbolic dynamics, that is, all
allowed orbits can be built from the alphabet{0, 1}. However, for our intermittent systems
it is more natural to use the alphabet{0n 1}, with n > 0. With this alphabet we can build
all the periodic orbits except for the neutrally stable one0. We will, therefore, extract the
factor (1− z/3β

0
) = (1− z) from 1/ζβ(z)

1/ζβ(z) = (1− z)/ζ̃β(z) (6)

and consider the zeta function

1/ζ̃β(z) =
∏
p 6=0

(
1− znp

|3p|β
)
. (7)

If we did the same thing for a hyperbolic system we would find that 1/ζ̃β(z) exhibited a
pole that would be cancelled by(1− z/3β

0
), so in that case the original alphabet would be

preferable. However, in our intermittent system such a cancellation will not occur.
In the following we will suppress the indexβ and instead index the zeta function by

that map it refers to. We will consider the series expansion of the functions 1/ζ̃f (z)

1/ζ̃f (z) = 1−
∞∑
n=1

anz
n. (8)

The nature of the leading singularity will be reflected in the asymptotic behaviour of
the coefficients{an} of this power series. To get an idea what this asymptotic behaviour
may be, we consider the zeta function of a closely related mapf̂ , being a piecewise linear
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approximation off . We definef̂ as a continuous function, coinciding withf on a sequence
of points f̂ (cn) = f (cn) where thecn’s are the inverse images of the critical point

c0 = 1 (9)

cn+1 = f −1
0 (cn) (10)

and linear in the intervals [cn+1, cn].
The dependence of the stabilities3p=0n1 on n can be estimated by replacing the

difference equationxn+1 = xn + 2sx1+s
n by the differential equation [5]

dxn
dn
= 2sx1+s

n (11)

having solution

xn = [x−s0 − s2sn]−1/s . (12)

Since nowxn ∼ c0 ∼ 1 andx0 ∼ cn we are led to the following asymptotic behaviour

cn ∼ n−1/s . (13)

This scaling law can be verified rigorously [6].
The construction off̂ gives it a very simple cycle expansion

1/ζ̃f̂ (z) = 1−
∞∑
n=0

zn+1

|30n1|β
≡
∑
n

ânz
n. (14)

The stabilities30n1 are simply related to thecn’s

30n1 =
1

cn − cn+1
(15)

with the asymptotic behaviour30n1 ∼ n(s+1)/s . The asymptotic behaviour of the coefficients
is thus

ân ∼ n−β(s+1)/s (16)

and it is natural to expect that the same holds for the sequence{an} in equation (8). If this
is indeed the case, then 1/ζ̃f (z) will contain a singularity of the type

(1− z)α α 6∈ N
(1− z)α log(1− z) α ∈ N (17)

with

α(β, s) = β(s + 1)

s
− 1 (18)

as can be realized through the Tauberian theorems for power series.
In [6] there are also stronger arguments thatz = 1 is a branch point of this type but it

is still not strictly proven. In [7] it is proven that the zeta function 1/ζf (z) is holomorphic
in a region enclosing the unit circle except for the line [1,∞] where we expect a cut. The
results in [7] apply to a more general case without a complete symbolic coding.

To check the accuracy of the piecewise linear approximation we want to numerically
determine the coefficients{an} by simply expanding the product (7) using all periodic orbits
up to period 20. This set contains∼105 periodic orbits and can be computed relatively fast.
Periodic orbits are determined by a Newton–Raphson procedure. To this end we look for
fixed points of some iterate of the inverted map, choosing branch according to the symbol
code.
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The coefficients for two values ofs are plotted in figure 1, together with the piecewise
linear approximation, which we know achieve the slope (16). The good agreement with the
piecewise linear approximation support our claim that the singularity is of the suggested
type.

For the binary shift map (s = 0) we would havean = 1/2n. For a slightly higher value
of the parameters = 0.1 (figure 1(a)) the coefficients conform with this behaviour for small
n, but eventually they are approaching the expected powerlaw.

We will also consider the Fredholm determinant

F̃ (z) =
∞∏
m=0

∏
p 6=0

(
1− znp

|3p|3m
p

)
. (19)

In the previous case, it was not essential to factor out the neutral periodic orbit, but
when considering the Fredholm determinant it is essential, the extra factor(1− z)∞ would
of course be devastating for our investigations.

In figure 1 we also plot the coefficient{bi} of the expansion of the Fredholm determinant

F̃ (z) = 1−
∞∑
i=1

biz
i (20)

together with the piecewise linear approximation and the good agreement leads us to assume
that the Fredholm determinant share the same leading singularity as the dynamical zeta
function.

3. Computing the topological pressure

Consider again the problem of computing the leading zero of

1/ζ̃ (z, β) =
∏
p 6=0

(
1− znp

|3p|β
)
. (21)

If β is close to, but less than unity, this leading zero will be close toz = 1, and it will be
extremely inefficient to compute it from a truncated power series inz. It is natural to try
to expand 1/ζ̃ (z, β) in a generalized power series aroundz = 1. If the leading singularity
is of the form(1− z)α the simplest possible expansion would be

1/ζ̃ (z, β) =
∞∑
i=0

ci(1− z)i + (1− z)α
∞∑
i=0

di(1− z)i . (22)

According to our previous findings we expect thatα = β(s + 1)/s − 1. Suppose now that
we replace these infinite sums by finite sums of increasing degrees,nc andnd , and require
that

nc∑
i=0

ci(1− z)i + (1− z)α
nd∑
i=0

di(1− z)i = 1/ζ̃ (z, β)+O(zn+1). (23)

If nc+nd +2= n+1 we just get a linear system of equation to solve in order to determine
the coefficientsci anddi from those of the series expansion aroundz = 0. It is also natural
to require that|nd + α− nc| < 1. So far we have assumed thatα is a noninteger. The case
with integerα can be worked out in close analogy.

To test the idea we choose (arbitrarily) the parameterss = 0.7 andβ = 0.9. In figure 2
we plot the leading zero against truncation lengthn, determined from expansion (23), and
the expansion aroundz = 0. The improvement is obvious. However, we do not claim that
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Figure 1. Expansion coefficientsan of the dynamical zeta function 1/ζ̃ (z)(β = 1) and bn of
the Fredholm determinant̃F(z) plotted againstn for the parameter values:s = 0.1 (a), and
s = 2 (b), together with the corresponding piecewise linear approximation (pwl). In (a) the
corresponding sequencean for the cases = 0 is drawn for comparison.

the simple expansion (22) is entirely able to capture the singularity atz = 1. However, a
more detailed understanding of the singularity structure could immediately be built in to the
ansatz and convergence should be further accelerated.

In figure 3 we plot the resulting topological pressure againstβ. The dependence on
s is more clearly seen if we plot the generalized Lyapunov exponents [2], related to the
topological pressure according to

λ(1− β) = P(β)
1− β . (24)

The (ordinary) Lyapunov exponent is given byλ = λ(0+). The generalized Lyapunov
exponents are plotted in figure 4.
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Figure 2. Leading zero fors = 0.7 andβ = 0.9 against truncation length determined from the
generalized series expansion aroundz = 1 and the power series aroundz = 0.

Figure 3. Topological pressureP(β).

If β > 1 the topological pressure will be governed by the branch point itself which stays
fixed atz = 1 soP(β) = 0 whenβ > 1. The nonanalyticity ofP(β) at β = 1, related to
the collision of the leading zero with the branch cut, is referred to as a phase transition [8].

4. A few words about correlation decay

The decay rate of correlations is a more intricate problem from a mathematical point of
view than the computation of chaotic averages. It is known that the spectra of zeta functions
(β = 1) and Fredholm determinants (19) are, at least in some cases, related to the (typical)
decay of correlations. For an exponentially mixing system the mixing rate is given by the
size of thegapbetween the leading and next-to-leading zeros ofF(z) [9]. We believe that a
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Figure 4. Generalized Lyapunov exponentλ(1− β).

close coupling between typical correlation decay and the analytic structure of the dynamical
zeta function or Fredholm determinant aroundz = 1 is possible even for systems without a
gap. Let us take the (formal) trace of the transfer operator

trLn =
∫ 1

ε

δ(x − f n(x)) dx =
∑
p 6=0

np

∞∑
r=1

δn,rnp

|det(1−3r
p)|
= 1

2π i

∫
|z|<1

z−n
F̃ ′(z)

F̃ (z)
dz (25)

whereε is a small number. The trace is formal because it makes no explicit reference to
eigenvalues of an operator, it is just the trace over the integral kernel of the operator. We
claim that this trace serves as an archetype correlation function. If there is a gap, residue
calculus tells us that the trace will approach unity exponentially fast and the rate is provided
by the size of the gap. But could this really work for the intermittent case, where the leading
zero is connected by a branch cut, running along the line Im(z) = 0Re(z) > 1? Let us
assume that̃F(z) is holomorphic and zero-free, except along the cut, in the disk 1< |z| < C

whereC > 1 [7]. The value of (25) for largen will be governed by the vicinity ofz = 1,
which we assume is, to leading order, described (17). The result (25) can then be evaluated
asymptotically

trLn ∼


1+ C/n1/s−1 0< s < 1

1+ C/ logn s = 1

1/s s > 1.

(26)

For 0 < s < 1 this suggests that typical correlations should decay as∼1/n1/s−1 which
indeed agrees with the rigorous results [6]. The failure of the trace to approach unity
for s > 1 reflect the fact that the invariant density is not normalizable anymore. The
relation between the topological pressure and thermodynamic properties mentioned in the
introduction is then rather obscure [2]. Some anomalous properties for the cases > 0 are
discussed in [4, 5].

There are indications that the identification between the behaviour of the formal trace
and the typical correlation functions is possible also for the Sinai billiard which seems to
exhibit the decay lawC(t) ∼ 1/t [10, 11].



L358 Letter to the Editor

5. Concluding remarks

The zeta function is a fundamental object in chaos theory. In this paper we have tried to
argue that even singularities in zeta functions carry interesting information. Moreover, the
damaging effect they have on convergence can be overcome.

We have focused on the problem of intermittency and studied a system with a complete
symbolic coding. We expect that the presented method should work even if the coding
was not a complete one. But the determination of the leading zero would be disturbed by
nonleading zeros and even singularities [12] beyond the unit circle.

In more general systems, in more dimensions and/or with continuous time, one can
usually not even define a generating partition. Periodic orbits are difficult to find and
authors have chosen alternative methods to access the topological pressure, via generalized
Lyapunov exponents [13] or via correlation functions [14].

However, for intermittent systems, when the leading zero is close to the branch point
the approach of [14] is not so successful. Phase transitions are difficult to extract from
correlation data. In [10, 15, 16] we have suggested a way to overcome this difficulty.
We have developed a probabalistic approximation of the zeta function, yielding a good
description of the exact zeta function in the neighbourhood of the branchpoint. To that
end we abandoned the periodic orbits entirely. We could then compute a few terms in the
generalized power series accurately. The technique discussed in the present paper is more
powerful. However, the expanded zeta functions for the continuous time systems considered
in [10, 15, 16] are actually Dirichlet series and the technique of this paper is not directly
applicable.

I would like to thank Viviane Baladi for discussions. This work was supported by the
Swedish Natural Science Research Council (NFR) under contract No F-FU 06420-303.
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